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The experimental data of Honkan & Andreopoulos (1997a) have been further ana-
lysed and some new statistical results obtained. In the present work, particular
emphasis is given to the time-dependent behaviour of the kinematic shear stress,
vorticity, enstrophy, dissipation rate, vorticity stretching and several of the matrix
invariants of the velocity-gradient tensor, strain-rate tensor and rotation-rate tensor.
The invariants are linked with terms appearing in the transport equations of enstro-
phy and dissipation rate. Indicative of the existence of extremely high fluctuations
is that all r.m.s. values are considerably larger than the corresponding mean values.
All invariants exhibit a very strong intermittent behaviour, which is characterized by
large amplitude of bursts, which may be of the order of 10 times the r.m.s. values.
A substantial qualitative agreement is found between the present experimentally ob-
tained statistical properties of the invariants and those obtained from direct numerical
simulation data. Patterns with high rates of turbulent kinetic energy dissipation and
high enstrophy suggest the existence of strong shear layers in the near-wall region. In
many instances, locally high values of the invariants are also associated with peaks in
the shear stress. Conditional analysis provides some evidence of the existence of se-
quences of several vortices during strong vortical activities, with an average frequency
of appearance four times higher than the frequency of appearance of hairpin vortices.

1. Introduction
Turbulence is characterized by a large variety of scales. Large scales are responsible

for the bulk transport of momentum or heat while small scales contribute significantly
in carrying out mixing at the molecular level. The role of small scales in the overall
behaviour of turbulence is not well understood. It is known, for instance, that small
scales transport heat more efficiently than momentum while large scales transport
momentum more efficiently than heat (see Chevray & Tutu 1978). It is also known
that small scales carry a significant amount of vorticity and contribute substantially
to the dissipation rate of turbulent kinetic energy. In addition, large-eddy simulation
(LES) methods, which are growing in number and range of applications that include
complex geometries, require information about small scales for modelling the subgrid
scales. In LES the dynamics of the fine-scale motions cannot be captured and therefore
need to be modelled.

There is considerable interest in studying the dissipative motions of turbulent flows
particularly in wall-bounded flows. In the present experimental work, the dissipative
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Figure 1. Boundary layer flow schematic and coordinates.

motions in a two-dimensional turbulent boundary layer have been investigated by
carrying out measurements of the complete velocity gradient tensor ∂Ui/∂xj using
instrumentation with high temporal and spatial resolution (see figure 1 for a schematic
of the flow and the definition of the coordinate system). Information on the velocity
gradient tensor can lead to additional information on the rate-of-strain tensor Sij ,
the rate-of-rotation tensor Rij and the rate of dissipation of turbulent kinetic energy
ε which can help in a better understanding of these complicated turbulent motions.
One way to provide information on this is to study the topology of these motions by
looking at the behaviour of the matrix invariants of all the tensors mentioned above.
Soria et al. (1994) and Cantwell (1993) studied the fine-scale turbulent motions of
plane mixing layers by considering all the matrix invariants of the velocity gradient
tensor, the rate-of-strain tensor and the rate-of-rotation tensor. The data generated
in the direct numerical simulation (DNS) of Moser & Rogers (1993) and used in
their studies indicated that the rate-of-strain tensor topology is characterized as
an unstable node–saddle–saddle configuration. Topological features of the fine-scale
motions in turbulent boundary layers and channel flows have been investigated by
Chaćin, Cantwell & Kline (1996) and by Blackburn, Mansour & Cantwell (1996),
respectively. DNS data from Spalart (1988) and Kim, Moin & Moser (1987) were
analysed in these investigations.

Thus far, the importance of the matrix invariants of these tensors as tools in
turbulence research has been demonstrated through theoretical analysis of DNS
data. The objective of the present work is to consider the issues related to matrix
invariants by analysing existing data obtained experimentally in a zero-pressure-
gradient turbulent boundary layer and documented in Honkan & Andreopoulos
(1997a), hereafter referred to as HA. Experimentally obtained measurements of the
rate-of-strain, the rate-of-rotation and the velocity gradient tensors have only recently
become available (Tsinober, Kit & Dracos 1992; Balint, Wallace & Vukoslavcevic
1991; Honkan & Andreopoulos 1997a). Time-dependent measurement of all the
elements of these tensors is a formidable task. The difficulties associated with the
measurements of velocity gradients are described in the recent review article of
Wallace & Foss (1995). Issues related to spatial and temporal resolution appear to be
the most significant among all that were considered.

An additional objective of the present study is to identify any differences that may
exist between computational and experimental data obtained by analysis of matrix
invariants. One likely difference may be due to the fact that most of the computational
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results and analysis of matrix invariants have been based on inviscid theory (see
Cantwell 1993) even though DNS data have been used for their verification. In plane
mixing layers, for instance, the effects of viscosity on flow topology may not be very
significant. In wall-bounded flows, however, the viscous layer above the wall may
have a significant effect on the local flow topology.

The availability of reliable experimental data of these tensors led to some further
analysis, which helped to better understand the behaviour of turbulent motions in
wall-bounded flows. In particular, the role of the instantaneous shear stress u1u2 in
dynamically significant events is further explored because the conditional sampling
work presented in HA has indicated that highly dissipative motions as well as highly
vortical motions are associated with the presence of substantial values of u1u2.

A multi-sensor hot-wire probe has been developed, tested, and applied in various
flows. The probe is capable of measuring the time-dependent rate-of-strain tensor,
the rate-of-rotation tensor i.e. vorticity vector, and the rate of dissipation of turbulent
kinetic energy with adequate spatial resolution. The statistical averages obtained in
a two-dimensional boundary layer have been successfully compared to a variety
of available DNS and experimental data. The reader is referred to HA for an
extensive description of the experimental techniques used and assessment of the
performance of the probe. Measurements of velocity gradients tensors with this probe
have been extended to vortex-dominated flows (Honkan & Andreopoulos 1997b),
mildly compressible grid turbulence (see Briassulis, Agui & Andreopoulos 2001)
and turbulence or vortex interactions with shock waves (see Andreopoulos, Agui &
Briassulis 2000).

Section 2 of the present work provides a brief analysis of the local flow topology
theory while the transport equations of the tensors are discussed in § 3. A short
description of the experimental set-up, instrumentation and techniques used is given
in § 4. The results are presented in § 5, vortex streaks are discussed in § 6, and the
conclusions are summarized in § 7.

2. Local flow topology
For an observer travelling with the local velocity at a given point inside a flow, the

geometry of the instantaneous flow pattern at some point in the neighbourhood can
be described, to first order, using the terminology of the critical point theory of Perry
& Chong (1987) and Chong, Perry & Cantwell (1990). According to this theory the
local flow topology can be classified according to the nature of the eigenvalues λ of
the velocity gradient tensor Aij = ∂Ui/∂xj that are the roots of the cubic equation

det [Aij − λδij] = λ3 + Pλ2 + Qλ+ R = 0, (2.1)

where the coefficients P , Q and R are the invariants of the tensor since their values
are unchanged by rotation of the coordinate frame. These invariants are

P = −trace [A]

Q = 1
2
(P 2 − trace [A2])

R = −det [A]

The velocity gradient tensor Aij can be decomposed, non-uniquely, into a symmetric
part, the rate-of-strain tensor

Sij = 1
2
(∂Ui/∂xj + ∂Uj/∂xi)



134 Y. Andreopoulos and A. Honkan

and the antisymmetric part, the rate-of-rotation tensor

Rij = 1
2
(∂Ui/∂xj − ∂Uj/∂xi) = 1

2
εijkΩk

where Ωk is the vorticity vector and εijk is the alternating unit tensor. Thus

∂Ui/∂xj = Aij = Sij + Rij

and consequently the invariants can be expressed in terms of Sij and Rij as

P = −Sii, (2.2)

which is zero for incompressible flows like the present one,

Q = 1
2
(−SijSij + RijRij) (2.3)

and

R = − 1
3
(SijSjkSki + 3RijRjkSki) (2.4)

The invariants of the rate-of-strain tensor Sij , PS , QS and RS can be similarly generated
by setting Rij = 0 (see Soria et al. 1994) in the previous relations:

PS = 0, QS = − 1
2
SijSij , RS = − 1

3
SijSjkSki.

One can also obtain the invariants of the rate-of-rotation tensor Rij:

PR = 0, QR = 1
2
RijRij , RR = 0.

The various flow topologies that can occur in the plane P = 0, which corresponds
to incompressible flows, are determined by the sign of the discriminant

D = 27
4
R2 + Q3. (2.5)

If D > 0 then there are one real and two complex-conjugate solutions of the
characteristic equation (2.1) which are called foci. If D < 0, equation (2.1) admits
three real solutions, which are called node–saddle–saddle according the terminology
introduced by Perry & Chong (1987).

It is important to notice that the topological classification at a given point of the
flow will be independent of the frame of reference chosen since it depends on D, i.e.
on R and Q, which are invariant to translation of the reference frame. As will be
shown in the next section these invariants are also related to dynamically important
quantities of the flow. It is apparent, for instance, that QS is proportional to the
dissipation rate and that QR is related to the enstrophy density (1/2)ΩiΩi.

3. Transport equations
The incompressible Navier–Stokes equations in tensor notation,

DUi

Dt
= −1

ρ

∂P

∂xi
+

1

ρ

∂τki

∂xk
, (3.1)

give a coupled set of equations for the rate-of-rotation tensor Rij and the rate-of-
strain-tensor Sij in a Lagrangian reference frame:

DRij
Dt

= SikRkj − SjkRki + ν
∂2Rij

∂xk∂xk
, (3.2)

DSij
Dt

= −SikSkj − RikRkj − 1

ρ

∂2P

∂xi∂xj
+ ν

∂2Sij

∂xk∂xk
, (3.3)
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1

ρ

∂2P

∂xk∂xk
= RikRik − SikSik, (3.4)

where D/Dt = ∂/∂t+Uk∂/∂xk is the total derivative, τki is the shear stress, P is the
instantaneous pressure, ρ is the density of fluid and ν is the kinematic viscosity. In
the notation above, a capital letter indicates time-dependent, total quantities while a
lower-case letter indicates the fluctuating part about the mean value, the latter being
indicated with an overbar.

Equation (3.2) is better known as a vorticity transport equation if the substitution
Rij = 1/2εijkΩk is made:

DΩi
Dt

= SikΩk + ν
∂2Ωi

∂xk∂xk
(3.5)

The transport equation for the rate-of-rotation tensor describes several dynamically
significant processes for the rotating eddies, namely stretching or compression of
vorticity by strain and viscous diffusion down a vorticity gradient. The viscous term
may also describe re-connection of vortex lines at very small scales due to viscosity. It
should be noted that the terms expressing stretching or compressing of vortex lines or
tubes also contain changes in vorticity due to re-orientation/rotation of vorticity by
strain. In the present context, the use of the term stretching also includes the notion of
re-orientation of the vorticity vector. The convection of vorticity has the characteristic
that it is preserved on a particle path, which implies that the vorticity can only be
transferred to the neighbouring fluid particle by diffusion, i.e. by the effect of viscosity.
The diffusion, together with the convection, results in the spread/decay of vorticity
and thus plays a vital role in the development of vortical flows. Unlike Navier–
Stokes equations for momentum conservation, the pressure term does not appear
explicitly in the vorticity transport equation and therefore enables simplification in
the computation and interpretation of the theoretical models of more ‘complex’ flows.

The dynamical equation for the strain S is more complex. In addition to the
nonlinear interaction and viscous smoothing, the strain undergoes rotation due to
vorticity and is subject to the non-local action of the pressure hessian ∂2P/(∂xi∂xj).

The above equations can be manipulated to obtain the transport equation for the
enstrophy density (1/2)ΩkΩk = RijRij:

D(RijRij)

Dt
= 2SikRkjRij + 2SjkRikRij + ν

∂2(RijRij)

∂xk∂xk
− 2ν

(
∂Rij

∂xk

)(
∂Rij

∂xk

)
. (3.6)

The transport equation for the time-dependent quantity UiUj contains the dissi-
pation tensor Eij:

DUiUj

Dt
= −1

ρ
Uj

∂P

∂xi
− 1

ρ
Ui

∂P

∂xj
+

1

ρ

∂Ujτki

∂xk
+

1

ρ

∂Uiτkj

∂xk
− Eij , (3.7)

where

Eij =
1

ρ
τki
∂Uj

∂xk
+

1

ρ
τkj
∂Ui

∂xk
, (3.8)

which is equivalent to

Eij = 2ν

[
Sik
∂Uj

∂xk
+ Sjk

∂Ui

∂xk

]
= 2ν[SikSjk + SjkSik + SikRjk + SjkRik]. (3.9)



136 Y. Andreopoulos and A. Honkan

For the dissipation rate of the total kinetic energy (1/2)UiUi the above relation
becomes

E = 1
2
Eii = 2ν[SikSik]. (3.10)

The transport equation (3.3) can be used to obtain the transport equation for
2SijSij , which is proportional to the instantaneous E:

D(2SijSij)

Dt
= −4SikSkjSij + 4RjkRkiSij

−4Sij
1

ρ

∂2P

∂xi∂xj
+ ν

∂2(2SijSij)

∂xk∂xk

−4ν

(
∂Sij

∂xk

)(
∂Sij

∂xk

)
. (3.11)

If one considers the following relation for the time dependent turbulent kinetic energy
1/2uiui:

1
2
uiui = 1

2
UiUi − uiUi − 1

2
UiUi, (3.12)

then the transport equation for it could be rewritten as

D 1
2
uiui

Dt
= −1

ρ

∂pui

∂xi
+

1

ρ

∂ui[τki + ρuiuk]

∂xk
− uiuk ∂Ui

∂xk
− uiuk ∂ui

∂xk
− 2νsijsij , (3.13)

and the source term with the meaning of production of turbulent kinetic energy could
be rewritten as

Pu = −uiuk ∂Ui

∂xk
− uiuk ∂ui

∂xk
= −uiuk ∂Ui

∂xk
+ (uiuk − uiuk) ∂ui

∂xk
, (3.14)

where the last term inside the parentheses indicates the fluctuation of shear stress
above its mean value. Equation (3.13) indicates that the time-dependent dissipation
rate of the turbulent kinetic energy appears to be

ε = 2ν[siksik]. (3.15)

It should be mentioned that SijSij = Sij Sij + sijsij . This relation indicates that the
time-average total dissipation rate of the total kinetic energy is different from the
dissipation rate of the time-average turbulent kinetic energy by Sij Sij which, in
the present non-homogenous flow, is non-zero and reaches large values very close to
the wall. It should also be mentioned that the fluctuating part of the two dissipation
rates SijSij and sijsij about their mean values are related through (SijSij − SijSij) =

(sijsij − sijsij) + 2sijSij . Thus the two fluctuating components are not identical.
Note also that on time-averaging these time-dependent transport equations the well-

known transport equations for mean turbulent quantities can be obtained. The intent
of the previous derivation was to formulate transport equations for instantaneous
quantities so that transport and source terms can be distinguished and to avoid the
erroneous consideration of instantaneous quantities obtained by simply ‘un-averaging’
the transport equations for mean turbulent quantities.

A comparison between the invariants and various terms appearing in some of the
transport equations derived above suggests that the second invariant Q of the velocity
gradient tensor is related to equation (3.4):

Q =
1

2

1

ρ

∂2P

∂xk∂xk
. (3.16)
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Ue (m s−1) δ (mm) θ/δ∗ (mm) cf uτ (m s−1) Reθ

3.2 140 17.5 13.6/17.5 0.0033 0.13 2790

Table 1. Principal flow parameters: Ue is the free-stream velocity, δ the boundary layer thickness,
θ the momentum thickness, cf the friction coefficient, uτ the friction velocity and Reθ , Reynolds
number based on θ.

It is also obvious that QS = −E/(4ν) and QR = (1/4)ΩkΩk . The first term of the
third invariant R of equation (2.4) or the invariant RS appear as a source term in
(3.11) and the second term of R is a source term in (3.6). Thus the invariants can be
used to obtain information on the transport equation of dynamically significant flow
quantities.

It should be pointed out that the invariants are related to the instantaneous total
quantities and not to the time-dependent turbulent part only.

4. Experimental set-up, instrumentation and techniques
The experimental investigations in this research have been carried out in the wind

tunnel of The Mechanical Engineering Department, at CCNY. The tunnel is of
open-ended suction type, with a 4 ft× 4 ft cross-section and has a 28 ft long working
area. The motor and fan assembly is housed in a sound-absorbing diffuser allowing
low noise operation of the facility and low levels of acoustical noise transmitted in
the working section. It is also mounted on a frame which rests on eight springs to
minimize vibration and isolates the motor and fan assembly from the working section.
Three sides – top, bottom and one wall – of the working section are of 1 in. plywood
while the other wall has four Plexiglas windows also of 1 in. thickness for observation.
The inlet of the contraction section is fitted with honeycomb followed by three layers
of fine steel screen to obtain uniform flow of turbulence intensity less than 0.1% for
the maximum speed in the working section. This contraction section is 12 ft× 12 ft at
one end, narrowing down to 4 ft× 4 ft, resulting in a 9 : 1 contraction ratio.

The boundary layer under investigation is developed on the floor of the wind tunnel
and transition to a stable turbulent flow is triggered by a 1 in. wide strip of medium
grit sand paper which is glued to the floor across the entire span upstream at the
entrance of the working section, to obtain a fully developed turbulent boundary layer
at the measuring location 22 ft downstream for the test velocity of 3.2 m s−1. The
friction coefficient cf computed from these tests agreed with the values obtained from
Clauser charts and Preston tube measurements. It was evaluated at several Reynolds
numbers in the working section and a plot of these values against the Reynolds
number based on the momentum thickness θ is shown in Andreopoulos & Agui
(1996). The principal parameters of the flow are stated in table 1.

The probe, shown schematically in figure 2(a), consists of a set of three individual
triple-hot-wire sensors put together so that the probe remains geometrically axisym-
metric. Each sensor of the triple-wire array is mutually orthogonal to other two, and
thus oriented at approximately 54.7◦ to the probe axis. Each of the 2.5µm diameter
tungsten sensors is welded onto two individual prongs which have been tapered at
the tips down to about 40 µm. Thus each sensor is operated independently since no
common prongs are used.

The hot-wire output voltage E is related to velocity, Ueff , ‘as seen by the sensor’
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Figure 2. (a) Sensor arrangement and probe dimensions in mm. (b) Photograph of probe.

through the well-known King’s law:

E2 = A+ BUn
eff. (4.1)

The effective velocity is related toUN ,UT andUB , the normal, tangential and binormal
components of the velocity vector respectively, by what is known as Jorgensen’s law:

U2
eff = U2

N + k2U2
T + h2U2

B, (4.2)

where k and h are yaw and pitch coefficients. Details of the techniques associated
with the use of triple-wire probes can be found in Andreopoulos (1983a), while
estimates of errors related to probe geometry and turbulence intensity are described
in Andreopoulos (1983b).

In selecting the vorticity probe dimensions several considerations had to be taken
into account during the design process:

(i) The individual wire length lw should be as small as possible so that small
scales can be resolved adequately (see Wyngaard 1969). The length of the wires is
also constrained by the conflicting requirement to minimize heat conduction effects
to the prongs which demands large lw/d ratio, where d is the wire diameter.

(ii) The size of the individual triple hot-wire array, lp should be as small as possible
to satisfy the assumption that the velocity is uniform across each wire of each array.
Small wire spacing however can lead to thermal interference and cross-talk between
the wires.

(iii) Since vorticity or strain rate will be computed from velocity gradients, spacing
of the individual probes should be finite so that velocity gradients do not disappear.
If this spacing becomes small the effect of noise may overwhelm the signal (see,
Antonia, Zhu & Kim 1993 and Wallace & Foss 1995).

(iv) Each of the wires should be controlled independently from the others. The
use of one common prong, as in the case of Balint et al. (1991), and Vukoslavcevic,
Wallace & Balint (1991), may create problems such as imbalance under dynamic
conditions.

(v) The transfer function of the hot-wire/anemometer system should be three
dimensional. This suggests that the probe should be able to respond to yaw and
pitch angle variations of the velocity vector in addition to its magnitude. Very often
King’s law is confined to contributions from one or two velocity components only.
While this assumption simplifies computations and is adequate for measurements in
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flows with low turbulence intensity, it is inadequate for measurements in flows with
relatively high turbulence intensity. Very close to the wall, fluctuations of all three
velocity components are very high and their magnitude is about the same in all three
directions. Neglecting contributions from one or two velocity components may lead
to very large errors in the measurements of turbulence (see Tutu & Chevray 1975).

The dimensions of the probe which were finally adopted are shown in figure 2(a). A
photograph of the entire probe assembly is shown in figure 2(b).

The probe required additional prongs to operate each sensor independently, which
increased only minimally the blockage effects due to the six extra prongs, by about
2.5% over that of Balint et al. (1991). Note that their probe uses 12 prongs by making
one common to a set of three hot-wires. The present probe, due to the mutually
orthogonal orientation of wires, has a larger ‘acceptance cone’ when compared to the
probe of Balint et al. (1991), which has one wire at 45◦ to the plane of the other
two orthogonal wires, and therefore the individual triple wire probe is capable of
measuring flows with larger turbulence intensities.

In order to compute all three vorticity components, and the six distinct terms of
the rate-of-strain tensor, six velocity derivatives need to be evaluated from the three
velocity components measured at the three locations, which are at the centres of
each of the three triple wires. If these velocity vectors are known then the derivatives
can be evaluated. A brief description of the computations of velocity gradients and
numerical techniques used in the present investigation is given in the Appendix.
The basic assumptions made in these computations is that the flow velocity remains
uniform across each wire but it can change across the hot-wire arrays in a linear
fashion. An iterative numerical scheme was developed to solve the system of available
equations efficiently. Performance data of the scheme are shown in HA. Details of
calibration techniques can be found in Honkan & Andreopoulos (1993).

The hot-wire sensors of the vorticity probe were operated by nine channel constant-
temperature anemometers, model 56COl /Cl 7 manufactured by Dantec Electronics
Inc. Two analog filters each with eight input channels and an integrated programmable
gain amplifier (model Filter 488/8) made by I0tech were used to low-pass filter the
anemometer output voltage signals before digitization. Data acquisition hardware
consisted mainly of two 16-bit (1 part in 60 000) resolution high performance analog
and digital interfaces model ADC488SA manufactured by I0tech. The board has a/d
conversion rate of 100 000 samples per second. On board simultaneous sample and
hold circuitry allowed simultaneous acquisition of all channels of data.

In-situ calibrations of the probe were carried out in the inviscid free-stream of
the flow, once prior to the data acquisition session and again at the end of the
experiment. The probe was placed in the middle of the working section by using a 3 ft
slender arm which was a part of a computer-controlled three-dimensional traversing
mechanism. Extensive yaw and pitch response measurements for each of the sensors
were then obtained by elegant coordination of data acquisition on one microcomputer
while performing required yaw or pitch rotations through motion control hardware
interfaced to another microcomputer. The range of angles covered was −30◦ to +30◦,
in steps of 5◦ for both yaw and pitch for five different free-stream velocities.

Data were collected simultaneously on all nine wires with a sampling rate of
5 kHz per channel for total duration of about 82 s at each point. This was adequate
according to the criteria given by Klewicki & Falco (1990) for statistical convergence
of ensemble quantities. The signals were low-pass filtered at 1 kHz before digitization.

Estimates of spatial resolution of flow scales of the multi-wire probe non-
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dimensionalized by the Kolmogorov viscous length scale η = (ν3/ε)1/4 (Kolmogorov
1941) are presented in HA. These estimates, which depend on the method used
to compute the dissipation rate ε, indicate a probe resolution of 4η to 7η in the
measurements of velocity gradients at x+

2 = 12.5 which is the measurement location
closest to the wall. The spatial resolution of each of the individual wires appears to
be in the range of 2η to 4η. These estimates of spatial resolution suggest a possible
attenuation of the measured velocity gradient fluctuations which could be of the
order 8% according to the analysis of D. W. Ewing & W. K. George (1994, personal
communication).

Uncertainty analysis presented in HA indicated that the probe is capable of mea-
suring mean velocity gradients within 12% in the inner-wall region and within 1%
in the free stream. The overall uncertainty achieved in the measurements of the
fluctuating velocity gradient depends also on the way the statistical averages are non-
dimensionalized. If inner-layer scaling is used, then the relative uncertainty ∆F/F
appears to be 10% in the viscous sublayer and buffer region and 20% in the log-
arithmic region. If outer-layer scaling is used, the relative uncertainty is 5% in the
viscous sublayer, 6% in the buffer region and 18% in the logarithmic region. If these
uncertainties are expressed relative to the maximum value of the wall mean vorticity
their estimates are reduced.

5. Results
5.1. Comparisons with existing statistical data

A detailed evaluation of the data obtained with the present multi-wire probe is
presented in HA, where statistical averages are compared with previously published
experimental and computational results. These comparisons included data of several
statistical quantities of fluctuations of the three velocity components, the three vortic-
ity components, all the elements of the strain-rate tensor and the dissipation rate. The
comparisons indicated that the performance of the multi-wire probe was very satis-
factory. Evidence was also presented in HA suggesting that the probe performs very
well in the high-mean-shear, near-wall region where fluctuations of the velocity vector
are substantial because of its larger acceptance cone. Some additional comparisons
are presented in the following.

Figure 3(a) shows the distribution of the turbulent kinetic energy 1/2(uiui)
+ across

the boundary layer. The distance from the wall, x2, is non-dimensionalized by the
boundary layer thickness δ. The present data are compared with the experimental
data of Balint et al. (1991) and Klebanoff (1954) as well as with the DNS data of
Spalart (1988). It should be mentioned that the experimental data of Balint et al. were
obtained by very similar experimental methods and at Reθ = 2685 which is very close
to the present Reθ = 2790, while Kelbanoff’s (1954) data were obtained at Reθ = 7600
and the DNS data of Spalart (1988) at Reθ = 1410. It appears that there is a very
satisfactory agreement between the present data and those of Balint et al. There is
also good agreement in the outer part of the boundary layer with those of Klebanoff
and Spalart. Similarly good agreement of the present (u1u2)

+ shear stress data is
observed with those of Balint et al., Klebanoff and Spalart (see figure 3b). However,
some deviations start to be noticeable when inner-layer scaling is used. Figure 3(c)
shows the kinetic energy distribution plotted across the boundary layer in inner-layer
scaling. The present data agree quite well with those of Balint et al. in the upper
end of the buffer region and the logarithmic region, and with the data of Lemonis
(1995) in the outer-layer which were obtained at Reθ = 6450. In the lower half of the
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Figure 3. Distribution of (a) turbulent kinetic energy across the boundary layer, (b) shear stress
across the boundary layer, (c) shear stress across the boundary layer in inner-wall variables, and
(d) shear stress in the near-wall region.

buffer region the data of Balint et al. are lower than the present ones. This difference
could be attributed to a greater number of velocity vectors being validated in the
present work as a result of a larger acceptance cone of the probe. Better agreement
between the present results and those of Balint et al. in the highly sheared region
near the wall can be observed when the (u1u2)

+ data are considered. Figure 3(d)
shows this comparison. The DNS data of Spalart (1988) and Kim et al. (1987) which
were obtained at a lower Reθ than the present one appear to be higher than both
experimental data sets in the region below x+

2 = 35 and lower in the region above.
Comparison of the measurements of mean turbulent enstrophy 1/2(ωiωi)

+ across
the boundary layer with the measurements of Balint et al. (1991) obtained at about
the same Reθ is shown in figure 4. In addition, the enstrophy measurements of
Lemonis (1995) at Reθ = 6450 and of Ong & Wallace (1998) at Reθ = 1070 are also
plotted for comparison. The present data of enstrophy agree remarkably well with the
measurements of Balint et al. (1991) and Ong & Wallace (1998), which are restricted
to the near-wall region below x+

2 = 75. Unfortunately there are no measurements in
the outer layer of the boundary layer. The measurements of Lemonis (1995) have been
carried out in the outer layer only at Reθ = 6450 and therefore cannot be directly
compared with the present ones. They indicate, however, possible Reθ effects, namely
a reduction of vorticity fluctuations with increasing Reθ . The boundary layer DNS
data of Spalart (1988) and the channel flow DNS data of Moser, Kim & Mansour
(1999) obtained at lower Reθ , are also plotted on figure 4 although they cannot be
directly compared with the present experimental results.
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Reynolds number effects (see Andreopoulos et al. 1984) and the slow relaxation of
boundary layer flows to wall disturbances used for tripping the flow (see Andreopoulos
& Wood 1982) may be the reasons for the minor differences between the various
data sets. Ong & Wallace (1998) attribute a large part of the differences between
the experimental data of Balint et al. and DNS data of vorticity to an apparent
overestimation of uτ in the experiments, which is raised to the fourth power. Ong
& Wallace’s data corrected for this overestimation agree quite well with the DNS
results. If the present data were corrected for similar effects they would also agree
very well with the DNS results. Nevertheless, no correction has been applied to the
present data.

The comparisons of the present data of velocity and vorticity statistics with experi-
mental data obtained by other investigators which have been presented in this section
as well as in HA and Honkan (1994), indicate that the overall performance of the
probe is very satisfactory. In particular the good agreement of vorticity statistics with
the data obtained in similar and comparable experiments by Balint et al. gives an
indication that the overall accuracy of the measurements is very reasonable. This also
provides confidence in the quality of the time-dependent data of the velocity gradient
tensor, which ensures reliability of the results obtained by further analysis.

5.2. Statistical characteristics of the velocity and vorticity fields

The cross-correlation between two components of the vorticity or velocity vectors is
always of interest. The best way to identify any possible correlations is by considering
the correlation coefficient defined as Cqiqj = qiqj/q

′
iq
′
j where qi is a fluctuating

component in the i-direction and qj is a fluctuating component in the j-direction and
q′i and q′j are the r.m.s. values of these components respectively.

Figure 5 shows the distributions of the correlation coefficients Cω1ω2, Cω1ω3,
Cω2ω3 and Cu1u2 across the boundary layer. Symmetry considerations and invariance
in the spanwise direction of all average quantities require that the cross-correlation
ω1ω2 is the only non-zero correlation between the fluctuating vorticity components;
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Figure 5. Cross-correlation coefficients of vorticity and velocity fluctuations.

the low values of Cω1ω3 and Cω2ω3 measured across the boundary layer confirm this.
Cω1ω2 reaches positive values between 0.2 and 0.27 almost everywhere. This suggests
a preference of the vorticity vector to have the two components ω1 and ω2 of the
same sign most of the time. For comparison, the velocity correlation coefficient Cu1u2

is also plotted in figure 5. It reaches negative values between −0.12 to −0.4, which is
the range found by other investigators. This negative correlation suggests that the two
velocity components u1 and u2 have opposite signs most of the time. It is interesting
to observe that the level of correlation between the two vorticity components is
lower than that of the two velocity components. This difference is most likely due
the size of the eddies which contribute most to the fluctuations of each of the two
quantities. Vorticity contributions come mostly from small eddies while the velocity
fluctuating field is characterized by contributions from larger eddies. It appears that
any correlation decreases with increasing contributions from smaller eddies. This also
explains why any correlation is reduced when the spatial resolution of the measuring
probe is enhanced. It should be also noted that the present measurements of the
cross-correlation coefficient agree rather well with some limited data of Cω1ω2 found
in the paper by Ong & Wallace (1998).

One of the most interesting features of the vorticity field is that the amplitude of
its fluctuations is substantially larger than its mean value. The r.m.s. value of the
fluctuations, for example, is very often greater than or equal to the mean vorticity.
This is evident if the intensity of vorticity fluctuations is considered. Data of the
intensity of the spanwise fluctuations, for instance, ω′3/Ω3 across the boundary layer
are plotted in figure 6. It appears that the major feature of the distribution of the
intensity of vorticity fluctuations is that ω′3/Ω3 reaches considerably higher values
than the corresponding turbulence intensity and that its maximum value occurs not
at or near the wall but at about x+

2 ' 90. Values as high as 3 at the beginning of the
logarithmic layer and as low as 0.45 in the outer layer can be found. These values
are about 10 times higher than the corresponding values of the turbulence intensity
((1/2)uiui)

1/2/U1 in the same flow. The shape of the distribution shown in figure 6 is
dominated mainly by the distribution of mean Ω3 across the boundary layer. Mean
Ω+

3 reaches a value of −1 at the wall and close to a zero negative value in the outer
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layer. The r.m.s. values, ω′3 are greater at the wall and in the near-wall region where
measurements were possible and diminish in the outer layer. The rate of decrease
with increasing distance from the wall in the outer layer is somewhat faster than that
of the mean vorticity −Ω+

3 so that the ratio ω′3/Ω3 goes to zero and not to infinity.
The present data are also compared to those of Balint et al. Qualitatively, both

data sets show the same trends. Their quantitative difference is mainly due to the
difference in the values of mean vorticity, Ω+

3 , since the ω′3 values agree reasonably
well, as has been pointed out in HA. The present measurements of mean vorticity
in the buffer region follow closely the theoretical distribution. Ω3 = A(x+

2 )3 − 1 of
Bradshaw & Huang (1995) where A = 1.4 × 10−3 according to Mansour, Kim &
Moin (1988). Balint et al.’s data agree with Spalding’s (1961) formula. These two
theoretical distributions are not identical. Thus, these small differences between small
values of mean vorticity in the two data sets are enough to introduce the quantitative
disagreement shown in figure 6.

The importance of the kinematic shear stress u1u2 in identifying organized motions
in turbulent flow has been recognized since the work of Bradshaw, Ferris & Atwell
(1967) and Townsend (1976). One aspect of this shear stress, which has attracted
rather little attention, is the large magnitude of the amplitude of its fluctuations
about its mean value. This is evident in some of the statistical properties of the
fluctuations which were evaluated in the present analysis, particularly in their r.m.s.
statistics across the boundary layer which have been computed and are plotted in
figure 7. Values of r.m.s. up to 2 in wall viscous units can be observed in the region
35 < x+

2 < 300. These values, which agree rather well with the old measurements
of Gupta & Kaplan (1972), are about 3 times the local mean shear stress value.
This indicates that, very often, mean values of shear stress and, to a certain extent,
consideration of time-average terms in the Navier–Stokes equations, can be very
misleading in the understanding of the physical aspects of the flow structure.

Figure 8 shows the distribution of the mean values of the three components of
the vorticity stretching vector SikΩk . The stretching term is a source/sink term in
the transport equation of vorticity and, in the absence of substantial viscous effects,
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Figure 7. Shear stress fluctuations across the boundary layer.
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it represents the net change of vorticity in a Lagrangian frame of reference. The
instantaneous total stretching term SikΩk is related to the instantaneous turbulent
stretching term sikωk through the relation SikΩk = Sik Ωk + sikΩk + Sikωk + sikωk .
Time-averaging yields SikΩk = Sik Ωk + sikωk . In the present case of a two-dimensional
boundary layer the first term on the right-hand side is zero and therefore it appears
that SikΩk = sikωk . Symmetry and invariance of averages in the spanwise direction
requires that stretching in the spanwise direction, S3kΩk = s3kωk , is the only non-zero
component. The data in figure 8 indicate that this term reaches significant values
very close to the wall. As the distance x+

2 from the wall increases, the stretching
decreases, and in the region x+

2 > 100, its value is negligible. The present data of
the other two vorticity components show very small values throughout the boundary
layer, as they should be since they are expected to be zero. However, the r.m.s.
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Figure 10. Enstrophy generating term ΩkΩiSik across the boundary layer.

values of all the stretching vector components are very significant, and in fact they
reach values one order of magnitude larger than the mean spanwise component.
This is shown in figure 9. High-amplitude fluctuations are evident very close to the
wall and low-amplitude fluctuations in the outer part. This is another feature of
the fluctuations in addition to their large amplitude, namely that they are present
throughout the boundary layer while their mean spanwise stretching component is
significant only in the region x+

2 < 100. It should be noted that the fluctuations
of the total stretching term SikΩk about its mean value SikΩk are different from the
fluctuations of turbulent stretching term sikωk about its mean value sikωk through the
relation (SikΩk − SikΩk) = (sikωk − sikωk) + sikΩk + Sikωk . The presence of the last two
terms in this relation prohibits (SikΩk)r.m.s. from being the same as (sikωk)r.m.s.. The
contribution of these two terms, however, appears to be relatively significant only at
the three measurement locations very close to the wall.
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As mentioned earlier, the instantaneous enstrophy is the second invariant of the
rotation-rate matrix Rij . The first two terms on the right-hand side of its transport
equation (3.6) are source/sink terms describing the generation or destruction of
enstrophy by the strain Sik through rotation and stretching or compression of vortex
lines. These enstrophy-generating terms can be expressed in terms of vorticity as
ΩkΩiSik . The time-average value of this very important quantity in the dynamics of
turbulent flows was found by Tsinober et al. (1992) to be always positive in grid-
generated turbulence, indicating the prevalence of vortex stretching over compression.
Figure 10 shows the distribution of the mean and r.m.s. values of ΩkΩiSik across the
boundary layer. Both quantities reach larger values very close to the wall and low
values in the outer layer. The most striking feature, however, is that the level of the
r.m.s. values is about 100 higher than the corresponding mean value at the same
location. This is further evidence indicating that very few physical aspects can be
explored through the time-average enstrophy equation.

Mean values of the term SijSjkSki across the boundary layer are shown in figure 11.
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Figure 13. Mean and r.m.s. values of dissipation rate across the boundary layer.

This is one of the two source/sink terms in the transport equation (3.11) of the total
dissipation SijSij . The other term appears to be the previously discussed term ΩkΩiSik
shown as RjkRkiSij in equation (3.11). Large negative values of SijSjkSki are reached
in the near-wall region while values close to zero are evident for x+

2 > 100. It is also
interesting to observe that this term is always larger than the ΩkΩiSik term. Figure 12
shows the ratio of these two quantities SijSjkSki/ΩiΩkSik . In ideal homogenous flows
this ratio reaches values close −3/4 according to Townsend (1951). The present data
show values close to −30 near the wall as a result of the strong non-homogeneity
of the flow in this region, and much less in the region x+

2 > 100. Tsinober et al.
(1992) have quoted a value of −2.4 of this ratio at x2/δ = 0.2 which corresponds
to about x+

2 = 840. This value is close to the present measurements in the outer
layer of the flow. Both SijSjkSki and ΩiΩkSik eventually obtain negative values in
the transport equation of SijSij , i.e. they tend to reduce dissipation. The first term,
however, is overwhelmingly larger than the second one throughout the boundary
layer, particularly in the region near the wall.

5.3. Rates of dissipation and production of turbulent kinetic energy

Figure 13 shows the distribution of the mean values of the dissipation rate of the
turbulent kinetic energy, ε+ = (2sijsij)

+ across the boundary layer. The r.m.s. values
of its fluctuations about its mean are also plotted in figure 13. The r.m.s. values
presented here appear to be of the same magnitude as the mean values. In fact, their
ratio ε+r.m.s./ε

+, which is also shown in figure 13, reaches values between 1 and 1.6.
Thus the dissipation is another quantity which is characterized by large-amplitude
fluctuations.

Mean and r.m.s. values of the production of turbulent kinetic energy, as described
by equation (3.14), are shown in figure 14. Large values of mean production can
be observed in the region x+

2 < 100. The r.m.s. values of the fluctuating part of the
production are about 10 times larger than the corresponding mean values in the
near-wall region and about 30 times larger in the outer region.

It should be pointed out here that the present data of mean dissipation rate and
mean production of turbulent kinetic energy have been compared very satisfactorily
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Figure 14. Mean and r.m.s. values of production of turbulent kinetic energy
across the boundary layer.

with the data of Balint et al. (1991) as discussed in detail by HA. In order to keep
clarity among the data presented in figures 13 and 14 the data of Balint et al. are not
re-plotted here.

It is very useful to compare the r.m.s. values of the production of (1/2)uiui with
those of the dissipation rate. It appears that the amplitude of the fluctuations of the
former is about 10 times larger than the amplitude of fluctuations of the dissipation
rate. This is a distinct difference between the production of turbulent kinetic energy
and its rate of dissipation, although both are expected to have, according to some
theories, mean values very close to each other in the logarithmic region. It should
be noted that not only should the time-average terms of the transport equation of
(1/2)uiui be in balance but also the time-dependent terms of equation (3.13). Thus, the
question which remains to be answered is how these large fluctuations of production
are balanced out instantaneously. Inspection of the time-dependent signals indicated
that the dissipation rate is much more intermittent than the production terms. Bursts
of dissipative activities are found which can have amplitudes 10 or more times their
r.m.s. values. These large excursions in the sijsij signal very often correspond to peaks
in the production of kinetic energy, but not always. The signal of the production
terms is considerably less intermittent than that of the dissipation and it is very often
counterbalanced by advection. Thus, it appears that any excess production of kinetic
energy which is not dissipated locally is advected downstream.

The present data of production and dissipation were further analysed by computing
their joint probability density function (JPDF). A typical JPDF for the data obtained
at x+

2 = 12.5 is shown in figure 15. Both variables are normalized through inner-wall
scaling. A peak in the distributions can be observed, which occurs at ε+ = (2sijsij)

+ =
0.2 and P+ = −0.12. The distribution is also characterized by long tails. Indicative of
the rare but violent bursting activities present in the dissipation signal are the large
excursions of the iso-probability contours in the direction of the dissipation axis,
which are particularly evident in the low probability contours despite the smoothing
applied to them.

Another demonstration of the relation between production of turbulent kinetic
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energy and its dissipation rate can be obtained if the eddy viscosity µt is considered.
One common definition of µt is as µt/µ = −ρuiujSij/2µSijSij which is very close to the

original one from the relation ρuiuj = (1/3)δijρuiui − 2µtSij . In the present context,
a coefficient of momentum exchange µe is defined as the ratio of the instantaneous
production of (1/2)uiui as expressed by equation (3.14) to the instantaneous dissipation
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rate: µe/µ = [−ρuiujSij + (ρuiuj − ρuiuj)sij]/2µsijsij . Thus µe can be considered as an
instantaneous eddy viscosity coefficient. Mean and r.m.s. values of this coefficient are
plotted in figure 16 normalized by the molecular kinematic viscosity of air µ. Mean
values of µe/µ are of order 1 in the near-wall region and are of the order of 40 in
the rest. These values compare very favourably with the theoretical eddy viscosity

µt/µ values which were obtained by assuming that S+
12 = 1 in the viscous sublayer,

S+
12 = 1 − A (x+

2 )3 in the buffer region with A = 1.4 × 103 (see Bradshaw & Huang

1995) and S+
12 = 1/(κx+

2 ) in the logarithmic-law region. In the outer part of the
boundary layer, the value of µt = 0.018ρUeδ

∗ has been used which yields µt/µ = 72.
The theoretical mean values were obtained from a ratio of mean values while the
mean values of the present experimental data have been obtained by time-averaging
the instantaneous ratio of production to dissipation rate ratio. In that respect perfect
agreement between these two quantities should not be expected. The r.m.s. values of
the µe fluctuations appear to be several orders of magnitude greater than its mean
values. The ratio between the r.m.s. and the corresponding mean of µe is 104 in the
near-wall region, decreasing fast to 12 in the outer region. These large fluctuations of
µe also indicate that, depending on the application, time-dependent phenomena may
be of greater importance than time-average ones. This further suggests that the use
of time-average transport equations may be very misleading in the understanding of
the physical processes occurring in turbulent flows.

Most of the quantities considered in the present investigation reach high values in
the wall region, which can be approximately defined as x+

2 < 80. Mean stretching
S3kΩk , for instance, as well as ω′3/Ω3, SijSjkSki, P

+ and µe, show some definitive
changes in their distributions at a distance from the wall between x+

2 = 60 and 100.
Around this location, the rate of change of any of the quantities considered above
with respect to x+

2 changes distinctly. S3kΩk , for instance, slows down, ω′3/Ω3 reaches
a peak and SijSjkSki reaches a plateau. This observation suggests that most of the
intensive vortical or dissipative processes occur in the region closest to the wall. The
outer layer is characterized by phenomena weaker in intensity relative to the near-
wall, which may be of interest too. Stretching or compression of vortex filaments is
evident there as indicated by the strong fluctuations of the stretching vector.

5.4. The measured invariants

The JPDF of the two invariants QR = (1/2)RijRij and QS = −(1/2)SijSij is shown in
figure 17 for the data obtained at x+

2 = 12.5. The mean-value distribution of QR has
been shown earlier in figure 4, while the mean- and r.m.s.-value distributions of QS
have been shown in figure 13.

The major characteristic of the JPDF is the long tails of its distribution. The most
probable values of −QS and QR are located close to the point (0.021, 0.020). However,
of interest are events with large values of either or both of the invariants which,
although having low probability of occurrence, are indicative of significant dynamical
processes. The bursting events present in the time-dependent dissipation signal, for
instance, which are associated with large-amplitude excursions of the SijSij signal,
contribute very little to the mean value of dissipation because they do not occur very
often, but they are very important because they contribute to the dissipative motions
of the small eddies. It is very interesting to see whether these highly dissipative events
are associated with large values of enstrophy. Soria et al. (1994) have associated the
large values of both −QS and QR with the existence of local shear layers in the flow.
These points on the −QS , QR plot are very close to the −QS = QR line. Events with
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large values of −QS and low values of QR are indicative of irrotational dissipation,
while events with low values of −QS and large values of QR are indicative of the
existence of vortex tubes in the flow.

Contours of the JPDF shown in figure 17 indicate that dissipation dominates the
flow motions more than enstrophy. The present data show some weak activity of
non-dissipative vortex tubes, while substantial irrotational dissipative motions can be
observed. The bulk of the data, however, fall in the region defined by large values
of both invariants, which indicates the existence of strong shear layers with a strong
degree of flow inhomogeneity since in many cases −QS 6= QR . The ragged contours
with low probability at large values of the invariants also suggest the existence of
violent events, very likely associated with the passage of shear layers through the
measurement location.

Mean and r.m.s. values of the second invariant Q of the velocity-gradient ten-
sor across the boundary layer are shown in figure 18. This invariant is related to
(1/ρ)∇2P/∂xk∂xk through equation (3.4) and it indicates whether strain or rota-
tion/vorticity dominates locally the dynamical processes, particularly pressure fluctu-
ations. Increased strain may be also associated with outer-layer eddies scrubbing the
wall (Kasagi et al. 1995) or with eddies ‘splashing’ on the wall (Wood & Bradshaw
1982). This invariant is also an indicator of the inhomogeneity of the flow, since

Q = 1
2
(−SijSij + RijRij) = −1

2

∂Ui

∂xj

∂Uj

∂xi
=

1

2

1

ρ

∇2P

∂xk∂xk
.

All measured mean values of Q are negative, suggesting on average that strain
dynamics dominate pressure fluctuations more than enstrophy. The fact that mean Q
reaches larger negative mean values in the near-wall region is also indicative of the
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Figure 18. Mean and r.m.s. values of the invariant Q across the boundary layer.
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Figure 19. Joint probability density function of the Q and R invariants of velocity
gradient tensor at x+

2 = 12.5.

flow inhomogeneity there. Values of mean Q approaching zero can be found in the
outer region of the boundary layer.

The r.m.s. data of Q shown in figure 18 are also very high near the wall and they
are diminishing in the region x+

2 > 100. They reach values which are 100 times larger
than the corresponding mean values, which may be indicative of significant dynamical
processes taking place in near the wall. This is another characteristic example of how
long time-averaging can mask the dynamics of the signals.
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The JPDF of the second and third invariants, Q and R respectively, of the velocity
gradient tensor is shown in figure 19. It has been computed from the data obtained at
x+

2 = 12.5. The axes of the graph, as in the JPDFs presented earlier, are normalized
by inner-wall variables. In the same figure the zero value lines of the discriminant
D of equation (2.2) are also plotted. These lines define the various regions of the
topologies on the plane P = 0 of the first invariant.

The most striking feature of the present JPDF is its qualitative agreement with
the JPDF of Chaćin et al. (1996, figure 4), which has been obtained from the DNS
data of Spalart (1988). The present iso-probability contours have a tendency to follow
the D = 0 line and assume an inverted teardrop shape. The most probable value,
however, is near the origin where most of the data cluster. The same exact features
can be discerned from the data of Chaćin et al. Events which are characterized by
large values of Q and R are mostly located in the fourth quadrant, where R > 0 and
Q < 0, and in the second quadrant where R < 0 and Q > 0. In the first case, with
Q < 0, the dissipative motions are stronger than the rotational ones and dominate
Q. It should be noted that the invariant R consists of two terms which appear as
source terms in the transport equation of SijSij (see equation (3.11)). Thus, when SijSij
increase, Q decreases, the source terms increase and therefore R decreases too. In that
respect, it appears that there is another relation among the invariants which is defined
through one of the transport equations. However, the physical interpretation of the
invariants remains with the flow topologies. In this quadrant, the flow topology can
be unstable–focus compressing if D > 0 or unstable–node saddle–saddle if D < 0.

Figure 20 shows the JPDF of the two strain-rate invariants QS and RS at x+
2 = 12.5.

These two invariants represent the dissipation rate and its generation term in the
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Figure 21. Joint probability density function of the QR and RR invariants of
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2 = 12.5.

corresponding transport equation (3.11). The data in this figure show that rare events
with large values of RS are also associated with large values of dissipation.

The JPDF between the two invariants QR and RR of the rotation-rate tensor are
shown in figure 21. The invariant RR is also one of the source terms appearing in the
transport equation of enstrophy (3.6).

6. The vortex streaks
It has been suggested in the past that the typical near-wall structure of a turbulent

boundary layer is a hairpin vortex or a horseshoe vortex (Theodoresen 1952; Smith
& Walker 1995; Robinson 1991; Blackwelder & Haritonidis 1983). The study of
the kinematics of the near-wall flow by Robinson (1991) showed the existence of
asymmetrical hairpin vortices and the presence of individual parts of these vortices
like single elongated legs or longitudinal cane vortices. Perry & Chong (1982) and
Perry, Henbest & Chong (1986) extended Townsend’s (1976) hypothesis of attached
eddies to postulate that the near-wall structure consists of a sequence of Λ-shaped
vortices which can induce a flow field with a logarithmic-law behaviour. Meinhart &
Adrian (1995) observed experimentally the existence of several uniform-momentum
zones separated by thin shear layers. This work, as well as the DNS of Liu & Adrian
(1999) in channel flows, provided evidence to conceptualize near-wall vortices as
groups or packets of several vortices aligned in space so that they generate a low-
momentum streak. Measurements of vorticity flux at the wall beneath the boundary
layer in our laboratory (see Andreopoulos & Agui 1996) indicated the generation of
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Figure 22. Typical signals of enstrophy, its time-derivative and intermittency function at x+
2 = 12.5.

bipolar vorticity at the wall, possibly in the form of mushroom-type vortices, with a
rate much higher than the traditionally defined bursting frequency.

In order to provide some additional insight into the fundamental structure near
the wall, the present data were further analysed by applying a level threshold to the
time-dependent enstrophy signal, ΩkΩk . The level of this threshold was no more than
one r.m.s. of the signal of enstrophy. The signal was then interrogated at each digital
point and the value of the intermittency function It was determined. It was defined
as It = 1 if the amplitude of the instantaneous signal, at a given time, was greater
than the threshold value or as It = 0 in all other cases. In that respect an event was
identified as when the amplitude of the signal was above the threshold value. This
approach allows consideration of significant vortical motions only, while ignoring all
other events with lower amplitude than the threshold. The time duration of these
strong events is Te = Ne∆t, where Ne is the number of points within the event and ∆t
is the sampling interval between successive points. The time between two sequential
events is designated as Tb = Nb∆t where Nb is the corresponding number of points
between these strong events.

The enstrophy signals showed, on many occasions, large fluctuations within the
time duration, Te, of a strong event. This may suggest the existence of several
vortical filaments inside a strong event. The passage of vortex sheets or shear layers
which contain several vortices, for instance, is the best candidate to provide physical
interpretation of the strong events detected here with substantial fluctuation of
vorticity within. In order to find out how often this vorticity burst/packet or vortex
streak phenomenon may take place, the data were further searched to determine the
number of local maxima/minima within a strong event. If one assumes that each
of these local maxima represents the passage of a vortex filament then the number
of these filaments or vortices within a strong event can be estimated. The number
of local extremes was calculated by considering the time-derivative of the enstrophy
signal ∂(ΩkΩk)∂t and counting its zero crossings. Figure 22 shows a typical time
record of the signals considered and the intermittency computed from the algorithm
described above. They have been obtained from the measured data at x+

2 = 12.5. In
addition, the corresponding signal of SijSij is also plotted for comparison. Both ΩkΩk
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and SijSij are related to the invariants QR and QS in equation (3.4). They are also
related through SijSij = (1/2)ΩkΩk + ∂Ui/∂xj∂Uj∂xi where the second term on the
right-hand side represents contributions from the inhomogeneous part of the flow. Its
time-average value is zero in homogeneous and isotropic flows. It is this term which
prevents SijSij and (1/2)ΩkΩk from being identical. Thus the difference between these
signals represent the effects of flow inhomogenities and significant fluctuations of the
term (1/ρ)∇2p.

The signals in figure 22 indicate that the strong events seem to be correctly depicted
by the present algorithm to determine the intermittency It, which behaves like a box-
car function. The time-derivative of enstrophy seems also to identify correctly the
local maxima/minima.

The PDF of the durations of events, Te, and that of the timing between these
events, Tb, are shown in figure 23. The two distributions are reasonably close to each
other. One characteristic feature of the two PDFs is their long tail which is indicative
of low-frequency events with low probability of appearance. It is also evident from the
two pdfs that the most probable value is N = 1. The mean values, however, appear
to be Ne = 25 and Nb = 20 respectively while the standard deviations are about the
same, σe ≈ σb ≈ 33. The average value of Nb yields a frequency, non-dimensionalized
by inner-wall variables, of n+

b = 0.23. If this value is compared with the traditional
bursting frequency of n+ ≈ 0.05 then it can be concluded that the present algorithm
identifies strong vortical events which occur more often than the near-wall bursts.
The vortical bipolar events identified by our wall-voriticty-flux measurements have a
frequency of appearance of about 0.18. In that respect our single-point measurements
at x+

2 = 12.5 depict all the vortical structures formed at x+
2 = 0 where vorticity is

produced by the non-slip condition at the wall.
The scatter plot of the number of points Ne of a strong event and the number of

maxima/minima, Nm, within this event is shown in figure 24 where values are plotted
on log-log scales. This type of scatter plot is equivalent to a JPDF. Since the number
of max/min Nm cannot be greater than Ne, the line Nm = Ne has also been plotted on
the figure. It appears that all the points lie below this line, as they should. The data
show large values with rather low-probability events while the largest accumulation
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of points is close to 1 which apparently is the most probable value. The mean value
of Nm is Nm = 6.7 which suggests that the average vorticity-based number of cycles
within a strong event is (1+Nm)/2 ' 4. This estimate is based on the assumption that
each cycle contains one maximum and one minimum. This analysis demonstrates that
a sequence of high-vorticity events, possibly a streak of vortices or shear layers can
be identified, on average, within a strong vortical structure. Their non-dimensional
frequency of appearance expressed in wall viscous units is n+

v = 1.1. Thus, the present
data have shown that there is a bursting mode of events within a strong vortical event
which may be interpreted as a streak of vortices. Let us consider how these events are
related to the packet of hairpin vortices found in the DNS of Liu & Adrian (1999).
The distance between the auto-generated hairpin vortices in the vortex packets of Liu
& Adrian appears to be, typically, between 70 and 250 wall viscous units. If the Taylor
hypothesis is invoked their frequency of appearance is between n+ = 0.08 and 0.27.
These values are close to the present n+

b = 0.23. In that respect, the strong vortical
events identified in the present analysis may be the hairpin vortices found by Liu
& Adrian. However, the bursting frequency of vortex streaks inside a strong vortical
event, n+

v = 1.1, is considerably higher than the frequency of hairpins within the packet
of Liu & Adrian. In that respect, the substructures within a strong event identified in
the present work may be different from the hairpin vortices of Liu & Adrian.

The present results appear to be qualitatively and, to a certain extent, quantitatively
independent of the threshold level. However, there is a certain degree of subjectivity
involved in the present analysis, as in every conditional analysis of data. This inherent
subjectivity is associated with the conditioning statement and hypothesis. There is
also considerable subjectivity in the interpretation of the results. Nevertheless, the
use of enstrophy as a conditioning function to identify strong vortical events seems
quite plausible, since large values of vorticity/enstrophy are always indicative of the
presence of strong vortices. Thus, there is considerable confidence that the present
techniques can provide some useful information on the structures identified. It is not
clear, however, whether these structures are hairpin vortices or some other type of
vortices.
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7. Conclusions

The experimental data of HA constitute fertile ground for some new analysis
and statistical results of wall-bounded turbulence in nominally two-dimensional in-
compressible boundary layers. The data include time-dependent values of the three
components of velocity and vorticity vectors, Ui and Ωi respectively, and all the
components of the velocity-gradient and strain-rate tensors, Aij and Sij respectively.
These data were obtained with a spatial resolution of about 7 Kolmogorov viscous
length scales in the near-wall region and of about 4 in the outer part of the boundary
layer.

In the present analysis, particular emphasis has been given to the time-dependent
behaviour of the kinematic shear stress, vorticity, enstrophy, dissipation rate of
turbulent kinetic energy, vorticity stretching and several of the matrix invariants of
the velocity-gradient tensor, strain-rate tensor and rotation-rate tensor.

A positive correlation coefficient between fluctuations of the longitudinal and
normal vorticity components has been found to exist throughout the boundary layer.
This value of 0.27 is considerably lower than the −0.4 value of the correlation
coefficient between the velocity fluctuations in the same directions.

The invariants have been linked with terms appearing in the transport equations
of enstrophy and dissipation rate. Indicative of the existence of extremely high
fluctuations is that all r.m.s. values are considerably larger than the mean values
of all quantities involving a velocity gradient. All invariants exhibit a very strong
intermittent behaviour which is characterized by large amplitude of bursts, which
may be of the order of 10 times the r.m.s. values.

The r.m.s. value of the instantaneous production of turbulent kinetic energy is
also 10 times higher than the mean production, while the r.m.s. of the dissipation-
rate fluctuations is about 1.5 times higher than its mean value. The r.m.s. value of
the stretching terms also appears to be about 10 times larger than the spanwise
mean stretching. These results clearly suggest that the use of time-average transport
equations for turbulent kinetic energy and vorticity can be very misleading in under-
standing the flow physics and structure. The results also suggest that time-dependent
quantities and transport equations should also be considered, where possible, even
for design purposes.

The iso-probability contours of the joint probability density function of the invari-
ants of the velocity gradient tensor assume an inverted teardrop shape which is in
qualitative agreement with the results of Chaćin et al. (1996) which were obtained
from the DNS data of Spalart (1988). In that respect the present experimental results
confirm the theory and numerical work of Chaćin et al.

Patterns with high rates of turbulent kinetic energy dissipation and high enstrophy
suggest the existence of strong shear layers in the near-wall region. In many instances,
locally high values of the invariants are also associated with peaks in the shear stress
as shown in figure 22 and in HA. It appears that the strain dominates the fluctuations
of pressure more than enstrophy.

Conditional analysis provided some evidence of the existence of streaks of several
vortices during strong vortical activities with an average frequency of appearance
four times more than the frequency of hairpin vortices.

The work was initially funded through a grant provided by the National Science
Foundation. The first author was supported by a NASA grant NAG3-2163 during
the later phases of this work.
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Appendix. Velocity gradient computations and numerical schemes
If the origin of a coordinate system is fixed at the centroid of the probe as shown

in figure 2(a) and subscripts 0, 1, 2 and 3 refer to quantities at the centroid of each of
the probes, the centres of first, second and third triple wires respectively, then Taylor
expansion of velocity component u at the centroid, neglecting higher order derivative
terms, yields

u11
= u10

+

(
∂u10

∂x2

)
x1=x2=x3=0

∆x21
+

(
∂u10

∂x3

)
x1=x2=x3=0

∆x31
, (A 1)

u12
= u10

+

(
∂u10

∂x2

)
x1=x2=x3=0

∆x22
+

(
∂u10

∂x3

)
x1=x2=x3=0

∆x32
, (A 2)

u13
= u10

+

(
∂u10

∂x2

)
x1=x2=x3=0

∆x23
+

(
∂u10

∂x3

)
x1=x2=x3=0

∆x33
, (A 3)

which form the following system of linear equations:

 u11

u12

u13

 =

 1 ∆x21
∆x31

1 ∆x22
∆x32

1 ∆x23
∆x33



u10

∂u10

∂x2

∂u10

∂x3

 . (A 4)

All the elements of the first matrix on the right-hand side can be expressed in
terms of 10 shown in figure 2(a) where ∆x2i and ∆x3i (i = 1, 2, 3) are the distances
between the centre of the ith triple wire and the centroid of the probe in the x2- and
x3-directions of the probe coordinate system respectively. The solution of (A 4) yields
the longitudinal velocity u10

and the two spatial derivatives at the centroid of the
probe.

Similar equations can be written for the normal component u20
and its partial

derivatives and for the transverse component u30
and its partial derivatives. Now

the streamwise derivatives are obtained by considering the momentum equation and
neglecting pressure and viscous forces gradients; the final expressions can be written as

∂u10

∂t
+ u10

∂u10

∂x1

+ u20

∂u10

∂x2

+ u30

∂u10

∂x3

= 0. (A 5)

Thus
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= − 1

u10

[
∂u10

∂t
+ u20

∂u10

∂x2

+ u30

∂u10

∂x3

]
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and similarly for the other gradients of the velocity components in the longitudinal
direction:
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u10

[
∂u20

∂t
+ u20

∂u20

∂x2

+ u30

∂u20

∂x3

]
, (A 7)
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[
∂u30

∂t
+ u20
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∂x2

+ u30

∂u30

∂x3

]
. (A 8)

They have been obtained by considering the momentum equations for the u2 and
u3 components respectively. These equations are considered as variations of Taylor’s
hypothesis.
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Finally, the temporal derivatives in (A 6)–(A 8) can easily be evaluated by the prod-
uct of two successive velocity values and sampling frequency fs which subsequently
allows computation of the streamwise derivatives.

Thus the determination of the longitudinal velocity derivatives is not entirely based
on the original version of Taylor’s hypothesis.

The velocity across each triple sensor is not assumed to be uniform. Thus each wire
of one triple-wire probe sees different velocity vectors. However, the velocity along
each individual wire is assumed to be uniform. In addition, the velocity gradient
between two individual wires is assumed to be the same across the entire probe.
Under these assumptions the linear velocity profile is segmented into multiple pieces,
nine areas in total.

An iterative scheme was used to improve the solutions obtained with each iteration.
The velocity gradients determined by the finite difference described in the previous
section were introduced to correct the velocity distribution across the entire probe.

In the orthogonal coordinate system x, y, z of the j-probe (j = 1, 2, 3) the compo-
nents of the velocity vector V0 at the origin are X0j , Y0j , Z0j . The velocity components
at the mid-point of each wire can be estimated as a first-order approximation in a
Taylor series expansion. Thus the velocity components at the mid-point (0,∆y, 0) of
the wire at the 0y-axis will be

X0j +
∂X0j

∂y
∆y, Y0j +

∂Y0j

∂y
∆y, Z0j +

∂Z0j

∂y
∆y.

A typical expression for the effective velocity Ueff ij of the i-wire (i = 1, 2, 3) of the
j-probe is as follows:

U2
eff ij = H2

ij(X0j +
∂X0j

∂y
∆y)2 +K2

ij(Y0j +
∂Y0j

∂y
∆y)2 +M2

ij(Z0j +
∂Z0j

∂y
∆y)2. (A 9)

The coefficients Hij , Kij and Mij are determined through calibrations. Each of the gra-
dients ∂X0j/∂y, ∂Y0j/∂y, ∂Z0j/∂y can be expressed in terms of the velocity gradients
in the coordinates of the centroid by simple transformations.

A system of three equations, one for each of the wires of the triple sensor array,
can be solved to provide estimates of the velocity vector (X0j , Y0j , Z0j). The solution
procedure is iterative. An initial ‘guess’ of the velocity components is obtained by
assuming that the increments (∂X0j/∂y)∆y, (∂Y0j/∂y)∆y, (∂Z0j/∂y)∆y are initially
zero. Then the velocity vectors at the origin of each of the triple-wire probes can
be obtained and subsequently the velocity gradients can be computed by the finite
difference scheme described previously. This leads to the first estimates of all partial
velocity gradients which can be introduced into (A 9) and a second estimate of velocity
vectors and velocity gradients can be obtained. The iteration stops when the solutions
converge. Usually, a small number of iterations is needed. The results at x+

2 = 12.5
indicate that about 82% of the number of samples processed converged after two
iterations only. The data also have shown that the number of iterations needed never
exceeded 10 for any of the samples considered.
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